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A MAP-Based Approach for Hyperspectral
Imagery Super-Resolution
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Abstract— In this paper, we propose a novel single image
Bayesian super-resolution (SR) algorithm where the hyperspec-
tral image (HSI) is the only source of information. The main
contribution of the proposed approach is to convert the ill-posed
SR reconstruction problem in the spectral domain to a quadratic
optimization problem in the abundance map domain. In order to
do so, Markov random field based energy minimization approach
is proposed and proved that the solution is quadratic. The
proposed approach consists of five main steps. First, the num-
ber of endmembers in the scene is determined using virtual
dimensionality. Second, the endmembers and their low resolution
abundance maps are computed using simplex identification via
the splitted augmented Lagrangian and fully constrained least
squares algorithms. Third, high resolution (HR) abundance maps
are obtained using our proposed maximum a posteriori based
energy function. This energy function is minimized subject to
smoothness, unity, and boundary constraints. Fourth, the HR
abundance maps are further enhanced with texture preserving
methods. Finally, HR HSI is reconstructed using the extracted
endmembers and the enhanced abundance maps. The proposed
method is tested on three real HSI data sets; namely the
Cave, Harvard, and Hyperspectral Remote Sensing Scenes and
compared with state-of-the-art alternative methods using peak
signal to noise ratio, structural similarity, spectral angle mapper,
and relative dimensionless global error in synthesis metrics. It is
shown that the proposed method outperforms the state of the
art methods in terms of quality while preserving the spectral
consistency.

Index Terms— Hyperspectral image, super-resolution recon-
struction, MAP Framework, quadratic programming.

I. INTRODUCTION

HYPERSPECTRAL sensors acquire images in many nar-
row spectral bands of the electromagnetic spectrum,

which allow us to identify materials from a single pixel.
Despite having high spectral resolution, HSIs suffer from low
spatial resolution; which degrades the performance in many
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applications such as target detection and object recognition [1].
Therefore, super-resolution reconstruction (SRR) which con-
verts a low resolution (LR) image into a high resolution (HR)
image is an essential research area for hyperspectral imaging.

In recent years, with the advances in hyperspectral imaging
systems and the ease of access to the hyperspectral data, great
efforts have been made for SRR of HSIs. Commonly, there are
two ways of attacking the SRR problem of HSIs. Although,
the majority of the works that deal with the SRR problem
use auxiliary information such as multiple LR HSIs or a
coinciding HR image with low spectral resolution, there are
also studies for SRR of HSIs without using any other source
of information. In the former case, different auxiliary data
are used for SRR. Multiple LR HSIs having sub-pixel shifts
with respect to reference LR HSI can be used to find the
high frequency details in the HSI [2]–[4]. Moreover, a HR
panchromatic, RGB or multispectral image (MSI) can also be
used to fuse with a LR HSI to enhance the resolution [5]–[7].
For this fusion problem, although there are approaches that are
adapted from existing pan-sharpening methods for MSIs [8],
there exist totally new approaches developed for HSIs such
as applying hyperspectral unmixing, comprising Bayesian
reconstruction or learning a dictionary. In [9], HR image and
HR abundances are jointly solved using spectral unmixing
and image fusion concepts together. Endmembers of HSI are
initialized and a joint projected gradient based minimization
is used to alternately unmix the data and update the end-
members and corresponding HR abundance maps. Coupled
Nonnegative Matrix Factorization (CNMF) uses unmixing in
the fusion process [10]. HSI is unmixed and endmembers
are initialized. HSI and MSI are alternately unmixed using
the NMF according to the cost functions promoting the data
fidelity. HR HSI is reconstructed using spectral signatures and
final abundance maps. HySure (hyperspectral super-resolution)
combines Bayesian and unmixing approaches together [11].
Different from the previously mentioned fusion methods,
HySure imports a vector total variation regularizer to the
fusion process. The total variation regularizer is preserving
edges while smoothing out noise in homogeneous regions.
In [12], a dictionary based SRR is proposed which uses LR
HSI to learn a dictionary whose atoms are the endmembers
of the scene. A sparse code is approximated by solving a
constrained sparse optimization problem. HR HSI is estimated
using the originally learned dictionary and the sparse code.
Bayesian approaches can also be used in dictionary learn-
ing to obtain the endmembers and abundances [13], [14].
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Then, Bayesian sparse coding is used to reconstruct the
HR HSI.

The main limitation of these approaches is the difficulty in
obtaining the additional source of information [15]. The sec-
ond way is to attack the SRR problem when the observed
data is a single frame in which there is only one LR HSI.
The SRR problem is more challenging if any other source
of information does not exist. In this case, the LR image has
fewer measurements than the number of unknown pixels in the
HR image making it an ill-posed problem. The single frame
methods can be further categorized as learning based and
regularization based methods. In learning based methods, high
frequency details of HSIs can be learned from the HR training
images [16], [17]. In general, the main advantage of learning
based methods is that they provide a natural way of obtaining
the required image characteristics, yet, training may require
long learning times and the performance highly depends on
the similarity between the training dataset and the test dataset.
There are also studies that use the same LR image for training
and do not need any training set or dictionary [18], [19]. On the
contrary, regularization based methods for SRR consider the
LR image as the prior knowledge of the HR image, and
regularize the solution space using prior assumptions. In this
approach, the spectral correlation is used between neighboring
pixels and it is employed a spatial regularization by this prior
knowledge to obtain HR classification maps [20], [21]. The
main drawback of this approach is the assignment of every
sub-pixel to a single endmember according to zoom factor.
However, this assignment causes an information loss in the
sub-pixel and the solution ends up having lower performance
for SRR. However, recent regularization based studies handle
the problem without assigning each sub-pixel to an endmem-
ber using different regularizers such as smoothness, low rank,
and spectral consistency [22]–[26].

In this study, LR image is also considered as the prior
knowledge of the HR image. However, in order to prevent
data loss in the SRR, sub-pixels are not assigned to any
single endmember while increasing the resolution. Abundance
of each endmember is preserved for that sub-pixel in SRR
process. In order to find the abundances of endmembers, linear
mixture model is used. The SRR problem in the spectral
domain is converted into a joint energy minimization problem
completely in the abundance domain. By doing so, using
quadratic programming techniques, unique solution is found
for the HR abundance maps. Using these maps and spectral
signatures of the endmembers, HR HSI is reconstructed.
Experimental results show that the proposed approach not only
performs better than state-of-the art methods, but also keeps
the spectral consistency. The rest of the paper is organized as
follows: Section 2 describes the methodology of the proposed
method, Section 3 gives the quantitative experimental results;
and Section 4 presents our conclusions.

II. PROPOSED APPROACH

In SRR, a real imaging system relating an HR HSI Z to the
LR observation scene Y is defined as the observation model
as given in (1). In this observation model, D represents the

down sampling operation, B represents the averaging filter for
blur operation and n is the additive noise. Here, Z and Y are
used in lexicographical representation in which the rows of
each spectral image band are concatenated to construct HR
HSI (Z ) and LR HSI (Y ) matrices as given in (2) and (3)
for p spectral bands. The relationship between Z and Y can
be written as:

Y = DB Z + n (1)

where

Z �
[
Z(1) Z(2) · · · Z(p)

]
(2)

Y �
[
Y (1) Y (2) · · · Y (p)

]
(3)

Y (p) corresponding to the pth band of LR HSI is of length
M N and Z(p) corresponding to the pth band of HR HSI is of
length l1 Ml2 N where M and N are the width and height of the
single band of the LR HSI, respectively. Also, l1 and l2 are the
down-sampling factors in vertical and horizontal directions,
respectively. D is of size M N × l1 Ml2 N , B is l1 Ml2 N ×
l1 Ml2 N and n is of size M N × p.

Using this observation model, the HR HSI estimate can be
found by:

Ẑ(i) = arg minZ(i)||DB Z(i) − Y (i)||2F i = 1, . . . , p (4)

where F stands for the Frobenius-norm.
SRR of color images, there are widely accepted methods

found in the literature [27]–[30]. However, SRR of HSI is
a more demanding problem. Because in HSI, the spectral
dimensionality of data is huge and developed algorithms
should handle these data. Moreover, the difficulty to obtain
several LR images enforces to enhance the resolution using
single LR HSI. Therefore, adding the prior information is
necessary for the single image SRR of HSI.

In hyperspectral imaging, unmixing is an approach to iden-
tify pure materials and their fractions in the scene. The spectra
of pure materials are called endmembers and their fractions for
a given pixel are called the abundance maps of the material.
In HSI, abundance of a material in a pixel is closely related
to the abundance of neighboring pixels for that material.
Therefore, instead of using pixel values, abundances of the
endmembers can be used in SRR of HSI. This idea has some
main advantages. First, in general, two neighboring pixels have
similar fractions for the same endmember [31] which can be
used as the smoothness prior to stabilize the ill-posed inverse
problem in solution of (4). Moreover, increasing the resolution
of abundances can give spectrally more consistent results
compared to the pixel based methods. Therefore, instead of
solving (4), abundance maps can be used in the SRR process.

Before performing spectral unmixing, a mixing model
should be determined. Mixing model describes how the
endmembers in a single pixel constitute the pixel spectra.
There are two types of mixing models namely linear mix-
ing model (LMM) and non-linear mixing model (NLMM)
[32], [33]. In LMM, the main assumption is that proportions
of the endmembers in each pixel are well-defined with a
single reflection of the illuminating radiation. In other words,
spectrum of each pixel in the HSI is a linear combination of
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the spectrum of endmembers and can be rewritten using the
endmembers and their abundances linearly. On the contrary,
the NLMM assumes materials are distributed randomly in the
mixed pixel in a homogeneous manner. Multiple reflections
exist and linear proportions does not hold for the NLMM
model which is more accurate than the LMM model. However,
LMM is widely used instead of NLMM because LMM gives
an acceptable first order approximation to the observed scene
and NLMM is much more difficult and complicated to analyze
HSI as compared to LMM [34]. Therefore, in this study,
spectral unmixing is applied using the LMM.

Using linear spectral unmixing, the HR image Z (or the
LR image Y ) can be written as a linear combination of the
endmembers based on their abundances. Since both HR and
LR HSI capture the same scene, the underlying materials
(i.e. endmembers) should be the same [35]. Therefore, the end-
member information extracted from one of the images should
also be same for the other one. Equations (5) and (6) show the
relation between abundances of HR and LR HSIs respectively.
Here, P is the endmember matrix, Az and Ay are the HR and
LR abundance map matrices, εZ and εY are the residual errors
between original image (i.e. Z or Y ) and the reconstructed
image.

Z = Az P + εZ (5)

Y = Ay P + εY (6)

Az �
[
Az(1) Az(2) · · · Az(E)

]
(7)

Ay �
[
Ay(1) Ay(2) · · · Ay(E)

]
(8)

where E denotes the number of endmembers in the scene
and P is a matrix of size E × p and each row of P is
an endmember. Az(e) and Ay(e) are the eth column of the
matrices Az and Ay respectively.

Assuming the residual errors εZ and εY are very small and
plugging (5) and (6) into the minimization problem given
in (4), the expression can be written in terms of spectral
signatures and abundances of the scene:

̂Az P(i) = argmin Az P(i)||DB Az P(i) − Ay P(i)||2F (9)

where P(i) shows the i th column of the matrix P . In (9), since
spectral signature matrix P is constant and if the determinant
of P is non-zero then it has no effect on minimization and
can be removed. Hence, (9) can be rewritten in a matrix form
in (10) or equivalently in a vector form by using summation
as given in (11).

Âz = argmin Az ||DB Az − Ay||2F (10)

Âz = argmin Az

E∑

e=1

||DB Az(e) − Ay(e)||2F (11)

Thus, in the proposed approach, (11) is minimized. In doing
so, the SRR minimization problem could be solved in the
abundance map domain, contrary to the spectral domain.
However, since the SRR is an ill-posed inverse problem,
the data constraint (DC) term in (11) should be regularized
with additional constraints. The smoothness constraint (SC)
that promotes smooth HR abundances, and the unity con-
straint (UC) that guarantees the sum of abundances for each

Fig. 1. Block diagram of the proposed method.

pixel in HSI to be equal to one are utilized. Using these
constraints with boundaries of the abundances (i.e. boundary
constraint (BC)), the total energy function is minimized and
solved for the HR abundances of endmembers. In [24]–[26],
Irmak et al. used the described approach to solve SRR problem
for HSIs. In this paper, we use a similar approach to come up
with a systematic solution together with additional constraints
to increase the performance. The block diagram of whole
process is given in Figure 1.

Each box in Figure 1 will be explained in detail in the
upcoming subsections.

A. Spectral Unmixing

Spectral unmixing is the process of endmember detection
and abundance estimation and several unmixing algorithms
exist in the literature [32] and [33].. A critical part of unmixing
is determining the number of endmembers in the scene.
One effective method to accomplish this is through virtual
dimensionality (VD), which gives the minimum number of
spectrally distinct signal sources that characterize the spectral
data [36]–[39]. In this paper, the noise whitened Harsanyi
Farrand Chang (NWHFC) method is used to estimate the VD,
due to its superior performance in several hyperspectral
datasets. The Harsanyi Farrand Chang (HFC) method uses a
Neyman-Pearson detection theory based thresholding [40]; and
NWHFC is a modified version of HFC with a preprocessing
noise whitening step to remove the second order statistical
correlation [41].

After the number of endmembers in the scene is determined,
the endmembers from hyperspectral data are extracted. Extrac-
tion algorithms can be divided into two groups: with or without
the assumption that pure pixels are present in the image
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for each endmember [42]. Since the pure pixel assumption
is a hard constraint for LR images, an endmember detec-
tion algorithm without the pure pixel assumption is more
suitable for our purposes. Therefore, in this study, a SISAL
based algorithm is used for endmember extraction, which was
shown to perform better than the competing methods in [43].
In SISAL, unmixing is achieved by finding the minimum
volume simplex which contains the hyperspectral data. This
optimization problem is solved by a sequence of variable
splitting augmented Lagrangian optimizations [44].

Once the endmembers in the scene are extracted, the next
step is to estimate the abundances. In the literature, vari-
ous approaches are proposed [45]. Among these, a FCLS
based algorithm has shown the best results to estimate the
abundance maps. FCLS is an iterative linear mixture analysis
algorithm that finds the abundance maps from the endmember
signatures considering the two properties of the abundances.
These properties are (i) the sum to one constraint (i.e. sum
of abundances for a single pixel is unity), and (ii) the non-
negativity constraint (i.e. abundances are non-negative). These
abundance maps are called as LR abundance maps throughout
the paper; and are used in the SRR process.

B. SRR Using Joint Energy Minimization

Once the LR abundance maps are known, (11) is the basic
data cost function for the estimation of the HR abundance
maps. However, this is an ill-posed inverse problem which
requires a regularization term to find the solution in a stable
manner as in (12).

CT = CD + λCR (12)

Here, CD is the data cost function, CR is the regularizer
function, CT is the total cost function and λ adjusts the degree
of the regularization.

To simplify the equality, the data cost in (11) can be
rewritten as:

CD = zT DT
D B DD Bz − zT DT

D B y − yT DD Bz + yT y (13)

where

z �

⎡

⎢
⎢
⎢
⎣

Az(1)
Az(2)

...
Az(E)

⎤

⎥
⎥
⎥
⎦

(14)

y �

⎡

⎢
⎢⎢
⎣

Ay(1)
Ay(2)

...
Ay(E)

⎤

⎥
⎥⎥
⎦

(15)

DD B �

⎡

⎢
⎢
⎢
⎣

DB 0 · · · 0
0 DB · · · 0
...

...
. . .

...
0 0 · · · DB

⎤

⎥
⎥
⎥
⎦

(16)

In (13), zT DT
D B y and yT DD Bz are scalar terms and are

equal to each other. In addition, yT y is constant and has no

Fig. 2. Cliques for the 4-neighborhood system.

effect on the minimization of the cost function. Therefore,
it can be removed; and the final form of CD is given in (17):

CD = zT DT
D B DD Bz − 2yT DD Bz (17)

After obtaining the data cost function, the regularization
term should be determined. It is known that real world images
have slow and sharp changes within the pixel neighborhood.
Therefore, the correlation between neighborhood pixels can
be used as a prior information in the SRR process. Markov
Random Field (MRF) model is a common image prior model
which assumes that the physical properties in a neighborhood
present a coherency and do not change abruptly [46]. An MRF
model constructs the global joint distribution from local neigh-
borhood relations. It is an undirected graph in which the nodes
represent the random variables. A node is independent of all
other nodes except the neighbor nodes, which are called as
cliques. For example, a pixel and its upper neighbor is a
clique. Figure 2 shows the 4-neighborhood (up, down, left,
right) cliques.

For an HR abundance map Az(e) of endmember e, the MRF
based smoothness regularizer, CR,e, states that the abundances
in a neighborhood should be close to each other. Therefore,
it penalizes the differences within the cliques, and is given
in (18):

CR,e =
4∑

j=1

||Az(e) − Ãzclique(e)( j)||2F (18)

where Ãzclique(e)( j) shows the 4-neighborhood pixel vector
for endmember e. Expanding the squared expression in (18):

CR,e = ||Az(e) − Su Az(e)||2F + ||Az(e) − Sd Az(e)||2F
+ ||Az(e) − Sl Az(e)||2F + ||Az(e) − Sr Az(e)||2F (19)

In (19), Su , Sd , Sl , Sr are the shift operations that shift
the image one pixel up, down, left and right respectively.
Analyzing the first term in (19), it can be rewritten it as:

||Az(e) − Su Az(e)||2F = ||(I − Su)Az(e)||2F
= Az(e)

T (I − Su)T (I − Su)Az(e) (20)

where I is the identity matrix of size l1 Ml2 N × l1 Ml2 N .
By using the expansion in (20), (19) can be rewritten as:

CR,e = Az(e)
T (I − Su)T (I − Su)Az(e)

+Az(e)
T (I − Sd)T (I − Sd )Az(e)

+Az(e)
T (I − Sl)T (I − Sl)Az(e)

+Az(e)
T (I − Sr )T (I − Sr )Az(e) (21)
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Then, (21) can be extended for all endmembers:

CR = zT [(IE − Du
S)T (IE − Du

S) + (IE − Dd
S )T (IE − Dd

S )

+(IE − Dl
S)T (IE − Dl

S) + (IE − Dr
S)T (IE − Dr

S)]z
(22)

where IE is the identity matrix of size El1 Ml2 N × El1 Ml2 N
and:

Du
S �

⎡

⎢
⎢
⎢
⎣

Su 0 · · · 0
0 Su · · · 0
...

...
. . .

...
0 0 · · · Su

⎤

⎥
⎥
⎥
⎦

(23)

Dd
S �

⎡

⎢⎢
⎢
⎣

Sd 0 · · · 0
0 Sd · · · 0
...

...
. . .

...

0 0 · · · Sd

⎤

⎥⎥
⎥
⎦

(24)

Dl
S �

⎡

⎢
⎢⎢
⎣

Sl 0 · · · 0
0 Sl · · · 0
...

...
. . .

...

0 0 · · · Sl

⎤

⎥
⎥⎥
⎦

(25)

Dr
S �

⎡

⎢
⎢
⎢
⎣

Sr 0 · · · 0
0 Sr · · · 0
...

...
. . .

...
0 0 · · · Sr

⎤

⎥
⎥
⎥
⎦

(26)

Finally, the total cost function CT in (12) is obtained by
combining the cost functions in (17) and (22) with a regular-
izer coefficient λ. Here, λ adjusts the smoothness degree of
the image. Then, CT is minimized to obtain the HR HSI.

In the minimization procedure, there are two constraints.
The first one, the boundary constraint (BC), is that the abun-
dances values, Az(e), are between zero and one:

0 ≤ Az(e) ≤ 1 ∀ e (27)

In (27), 0 and 1 are the column vectors of size l1 Ml2 N
in which every element is 0 and 1, respectively. The second
constraint, the unity constraint (UC), is that the sum of
abundances for a single pixel should be unity:

UC =
E∑

e=1

Az(e) = 1 (28)

To convert the problem into a form of quadratic minimiza-
tion problem, (28) can be written as:

Aeq z = beq (29)

where

Aeq �
[
I I · · · I

]
(30)

beq � 1 (31)

Aeq is of size l1 Ml2 N × El1 Ml2 N which is constructed
by concatenating E number of identity matrices horizontally
and beq is the column vector of size l1Ml2 N .

With the cost functions, the HR abundance maps are esti-
mated using the CT in (12) with the BC in (27) and UC

Fig. 3. Block diagram of texture preserving operation.

in (28). Since UC is a constraint between abundance maps,
a joint minimization is required. This minimization problem
is quadratic and can be solved using quadratic program-
ming (QP) methods [47]. A general QP problem is in the
form:

minimize f (z) = 1

2
zT H z + f T z (32)

subject to Aeq z = beq (33)

l ≤ z ≤ h (34)

The cost function CT can be converted to the quadratic form
given in (32) with defining H , f , l and h as:

H � 2DT
D B DD B + 2λ.[(IE − Du

S)T (IE − Du
S)

+(IE − Dd
S )T (IE − Dd

S )

+(IE − Dr
S)T (IE − Dr

S)

+(IE − Dl
S)T (IE − Dl

S)] (35)

f � (−2yT DD B)T (36)

0 ≤ z ≤ 1 (l = 0 and h = 1) (37)

After these rearrangements, the problem can be solved using
QP solving techniques such as the interior point method which
has been proven to work well in practice [48]. In this study,
QP problem is also minimized using the interior point method;
and the global minimum point gives the HR abundance maps
of the HR HSI.

C. Post Processing to Remove λ Dependency

In the cost function, the value of λ is very critical. Higher
λ values oversmooth the image whereas lower λ values pre-
serve the textures but lead energy minimization into an ill-
posed inverse problem. Therefore, finding the optimum λ value
is a hard problem and instead of using a constant λ, the method
suggested by [49] is used to preserve edges and textures.
In this method, the SRR problem is solved two times with
two different regularization parameters; λ1 and λ2 as shown
in Figure 3. First, regularization parameter is chosen to be
very close to zero (i.e. λ1 ≈ 0) and it creates a noisy estimate
of the image while preserving textures. This solution can be
called as the Maximum Likelihood (ML) estimate. On the
other hand, the second regularization parameter is chosen to
be much greater than the first one (λ1 � λ2) and creates an
over-smoothed SRR estimate. Similarly, it can be called as
the MAP estimate. The difference of the first estimate and
the second estimate gives the high frequency (HF) image that
is composed of edges and textures. Then, Gabor filters in
different orientations are applied to this HF image to detect
textures. These filters applied to HF image separately and
for each filter output, the pixels below a predefined threshold
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Fig. 4. Texture Preserving example. (a) HR abundance map. (b) LR
abundance map. (c) HR map estimate. (d) HR ML estimate. (e) HF abundance
map. (f) TP abundance map.

are masked. Then, these masked filter outputs are summed
to obtain the restored HF image. Finally, the restored HF
image is summed with the MAP estimate to obtain texture
preserved (TP) final image. Instead of the image bands, in the
proposed method, texture preserving is applied to abundance
maps. An example of ML estimate, MAP estimate, HF image
and final TP abundance map are given in Figure 4. In this
figure, HF image shows the textures in the abundance map
and these textures are restored in the final abundance map.

After the smoothness-prior-based energy minimization is
performed as discussed in Sec.II-B, this texture preserving
operation is applied to restore the details in the image. It is
applied to each abundance map; so TP HR abundance maps are
obtained for all endmembers. Using these HR abundances and
the spectral signature matrix P , final HR HSI is constructed
using equation (5).

As a side note, the UC and BC in the energy function are
not affected by the texture-preserving operation. Since both the
ML and the MAP estimates of the abundances satisfy the UC
and BC; summing the unity gain filtered difference of them
with MAP estimate also satisfies these constraints. Therefore,
TP abundance maps still have the properties of abundance
maps of HR HSI.

III. EXPERIMENTAL RESULTS

The proposed method is applied to three different datasets.
The first dataset is the Cave dataset which consists
of 32 scenes [50]. It is in the 400 nm to 700 nm wavelength
range with steps of 10 nm. The second database, called
Harvard [51], has 50 indoor and outdoor images recorded
under daylight illumination. Images have 31 spectral bands

of 10 nm width, ranging from 420 nm to 720 nm. The last
dataset is the Hyperspectral Remote Sensing Scenes (HRSS)
dataset of urban areas consists of 5 images [52]. The area cov-
ered is comprised of images of different sizes, with hundred
spectral bands from 380 nm to 2500 nm.

For all the experiments, image patches with size
256x256 are used as the reference image. These HR patches
form the ground truth and are used to evaluate the performance
of the proposed method. The LR HSI are obtained from these
HR images by blurring the HR HSI using a 3x3 averaging
filter, down sampling the result by two and adding a 30 dB
additive white Gaussian noise signal.

The proposed method is compared with different methods.
The first method is the standard bicubic interpolation which
is applied to HSI band by band. The second method is
called Timofte et al.’s [53] method which is a state-of the
art single image dictionary based SRR method. For the
training samples, ten percent of the HSIs are used for each
dataset with patch size of 256x256, dictionary size of 1024,
and a neighborhood size of 2048. The last two methods
are the two recent single image SRR methods for HSIs;
which will be referred to as the Xu et al. [22] and the
Li et al. [19] from now on. Xu et al.’s method is a very
recent regularization based single image SRR method for
HSIs. Li et al.’s method is a dictionary based hyperspectral
SRR method; which was shown to have a better perfor-
mance than several other hyperspectral SRR methods [19].
In the experimental results, the proposed approach is compared
to both of these studies with or without the post-processing
stage described in Sec.II-C. In the rest of the paper, our
results without the post-processing stage will be referred to
as the “MAP w/o post-processing” and the results after the
post-processing stage will be referred to as the “MAP w
post-processing”. In both methods, the same regularization
parameter (i.e. λ) value is used to find the MAP estimate.
The value is determined heuristically using the datasets.

The algorithms are compared quantitatively using four mea-
sures: (i) peak signal-to-noise ratio (PSNR), (ii) structural
similarity index measure (SSIM), (iii) spectral angle map-
per (SAM) and (iv) relative dimensionless global error in
synthesis (ERGAS). The first measure, PSNR, is the ratio
between the maximum possible power of a signal and the
power of the distorting noise [54]. Given an estimated image y
and a reference image x , PSNR is computed as:

PSN R(x, y) = 10 log10

⎛
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(38)

where M AX I is the maximum intensity in the reference
image.

The second measure, SSIM, is based on the human visual
perception which is more sensitive to structural informa-
tion [55]. The SSIM is defined as:

SSI M(x, y) = (2μxμy + C1)(2σxy + C2)

(μx
2μy

2 + C1)(σx
2 + σy

2 + C2)
(39)
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TABLE I

EXPERIMENTAL RESULTS FOR THE CAVE DATASET

TABLE II

EXPERIMENTAL RESULTS FOR THE HARVARD DATASET

where μx and μy are the mean values of the pixels in a
window for images x and y. σ 2

x , σ 2
y and σxy are the variances

of x , y and the covariance of x and y respectively. C1 and
C2 are two constants used to avoid instability, and are set to
0.01 and 0.03 respectively as in [55].

The third measure, SAM, is the angle between the estimated
i th pixel x(i) and the ground truth i th pixel y(i), averaged over
the whole image [56]. The SAM is given in (40) where N is
the number of pixels in the image. It measures the average
spectral distortion in radians between two images.

S AM(x, y) = 1

N

∑
arccos

x(i)T y(i)

||x(i)||2||y(i)||2 (40)

Last measure is ERGAS which is used to measure the
radiometric distortion in the images [57]. The main difference
between SAM and ERGAS is that the former is used to
measure spectral distortion whereas the latter is concerned
with the radiometric distortion. Therefore, both metrics are
the most common metrics for quantitative comparisons in HSI
applications.

E RG AS(x, y) = 100

S R

√√
√√ 1

p

p∑

i=1

(
RM SE(xi , yi )

μi

)2

(41)

where p is the total number of bands, S R is the scale ratio
between LR and HR images, RM SE is the root mean square
error function and μi is the average of the i th band. A zero
ERGAS value denotes the absence of radiometric distortion,
but possible spectral distortion.

In these metrics, while higher PSNR and SSIM measures
indicate a better match between the estimation and the ground

Fig. 5. Experimental results on the cave dataset. (a) HR original image.
(b) LR image. (c) Bicubic interpolation. (d) Timofte et al. (e) Xiong et al.
(f) Jie et al. (g) MAP w/o post-processing. (h) MAP w. post-processing.

truth; lower SAM and ERGAS values are desired for smaller
distortions.

All three datasets are tested with these performance metrics.
The mean of the results of all images for each dataset are
given in Tables I–III. Upon observing the results, in all
datasets, both MAP without post-processing and MAP with
post-processing approach outperform the other methods nearly
in all metrics. MAP with post-processing approach has slightly
better performance in all metrics and datasets as compared to
MAP without post-processing. The proposed approaches have
superior performance in HRSS dataset in which HSIs have
more than hundreds of bands. This is particularly critical in
remote sensing applications where HSI consists of hundreds
of bands.

For visual comparison, in Figures 5–7 RGB images are
given using red, green and blue bands of HSI. Visual results
show that our proposed approaches are better than the both
methods. The effect of edge preservation can be seen in these
figures. MAP with the post-processing preserves the edges and
textures as compared to the MAP without the post-processing.
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Fig. 6. Experimental results on the Harvard dataset. (a) HR original image.
(b) LR image. (c) Bicubic interpolation. (d) Timofte et al. (e) Xiong et al.
(f) Jie et al. (g) MAP w/o post-processing. (h) MAP w. post-processing.

TABLE III

EXPERIMENTAL RESULTS FOR THE HRSS DATASET

Spectral consistency is another important issue in
SRR of HSI. The spectral characteristics of an average
of 8-neighborhood pixels of the center pixel of the one
of the HRSS image (i.e. region shown with the white box
in Figure 8) are calculated from the results of the four com-
pared algorithms. The results are given in Figure 9 between

Fig. 7. Experimental results on the HRSS dataset. (a) HR original image.
(b) LR image. (c) Bicubic interpolation. (d) Timofte et al. (e) Xiong et al.
(f) Jie et al. (g) MAP w/o post-processing. (h) MAP w. post-processing.

Fig. 8. Spectral consistency calculation region.

the bands from 1 to 50 for better visuality. As seen from
Figure 9, the ground truth and our proposed methods are nearly
overlapped. However, bicubic interpolation and Xiong et al.
methods highly degrade the spectrum consistency. Moreover,
Timofte et al. and Jie et al. have better performance than
bicubic interpolation and Xiong et al. but corrupt the bands
from 45 to 50. RMSE between the ground truth and SRR
methods are also calculated using average of 8-neighborhood
pixels of the center pixel of the image and given in Table IV.
One can see that the proposed methods have better spectral
consistency as compared with the other SRR methods.
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Fig. 9. Spectral reflectance characteristics of HRSS dataset for different
SRR methods.

TABLE IV

RMSE IN SPECTRAL REFLECTANCE BETWEEN

GROUND TRUTH AND SRR METHODS

Lastly, MATLAB is used in the implementation of the
algorithm. The implementation is not optimized for speed and
computation time depends on the number of endmembers.
In the experiments, the estimated number of endmembers
are typically between 3 and 10 and the average computation
time is around 6 minutes for MAP without post-processing
and 12 minutes for MAP with post-processing on a single
i7 quad core 2.2 GHz CPU for a single HSI SRR. Moreover,
memory requirement is optimized using sparse matrices in
the implementation. For example, H matrix, which has the
highest memory requirement in the implementation, requires
171 MB memory for 10 endmembers, 256x256 image and
3x3 averaging blur and total memory requirements is below
2 GB for the implementation.

IV. CONCLUSION

In this work, a novel MAP based SRR method for HSIs is
presented. The idea of the proposed approach is that instead
of using the spectral images, the correlation of neighboring
pixels in terms of abundances of the endmembers and their
properties in the scene are used in the SRR process to form a
quadratic optimization problem in the abundance map domain.
Moreover, QP problem is solved jointly with constraints
specific to abundance maps results in more stable solutions.
Another advantage of using the abundances in SRR process is
obtaining spectrally more consistent results in HR HSI. In the
proposed approach, first, hyperspectral data is unmixed and
abundances of the endmembers are found. Then, using the LR
abundance maps as the basic DC, an energy function is defined
using an SC from a priori information with a UC and a BC for
the abundance maps. This energy function is jointly minimized
using QP. Moreover, in order to preserve textures, a post
processing is applied to the HR abundance maps. Proposed

approach is tested on three real hyperspectral datasets and
compared to other state-of-the-art SRR methods. The results
show that the proposed algorithm produces better results in all
PSNR, SSIM, SAM and ERGAS metrics compared to other
techniques. In addition, upon observing the individual pixels
for spectral consistency, the proposed method is closest to the
ground truth in the experiments.

ACKNOWLEDGEMENT

The authors would like to thank Jie Li for providing the
source code for [19].

REFERENCES

[1] Y. Gu, Y. Zhang, and J. Zhang, “Integration of spatial–spectral informa-
tion for resolution enhancement in hyperspectral images,” IEEE Trans.
Geosci. Remote Sens., vol. 46, no. 5, pp. 1347–1358, May 2008.

[2] Q. Wang and W. Shi, “Utilizing multiple subpixel shifted images in
subpixel mapping with image interpolation,” IEEE Geosci. Remote Sens.
Lett., vol. 11, no. 4, pp. 798–802, Apr. 2014.

[3] L. Su, S. Zhou, and Y. Yuan, “High spatial resolution image restoration
from subpixel-shifted hyperspectral images,” J. Appl. Remote Sens.,
vol. 9, no. 1, p. 095093, 2015.

[4] J. C.-W. Chan, J. Ma, and F. Canters, “A comparison of superresolution
reconstruction methods for multi-angle chris/proba images,” Proc. SPIE,
vol. 7109, p. 710904, Oct. 2008.

[5] Y. Zhao, Y. Yang, Q. Zhang, J. Yang, and J. Li, “Hyperspectral
imagery super-resolution by image fusion and compressed sensing,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2012,
pp. 7260–7262.

[6] H. Kwon and Y.-W. Tai, “RGB-guided hyperspectral image upsampling,”
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 307–315.

[7] C. Kwan, J. H. Choi, S. Chan, J. Zhou, and B. Budavari, “Reso-
lution enhancement for hyperspectral images: A super-resolution and
fusion approach,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2017, pp. 6180–6184.

[8] L. Loncan et al., “Hyperspectral pansharpening: A review,” IEEE Trans.
Geosci. Remote Sens., vol. 3, no. 3, pp. 27–46, Sep. 2015.

[9] C. Lanaras, E. Baltsavias, and K. Schindler, “Hyperspectral super-
resolution by coupled spectral unmixing,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2015, pp. 3586–3594.

[10] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix
factorization unmixing for hyperspectral and multispectral data fusion,”
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528–537,
Feb. 2012.

[11] M. Simoes, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A convex
formulation for hyperspectral image superresolution via subspace-based
regularization,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6,
pp. 3373–3388, Jun. 2015.

[12] N. Akhtar, F. Shafait, and A. Mian, “Sparse spatio-spectral represen-
tation for hyperspectral image super-resolution,” in Proc. Eur. Conf.
Comput. Vis., 2014, pp. 63–78.

[13] N. Akhtar, F. Shafait, and A. Mian, “Bayesian sparse representation for
hyperspectral image super resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 3631–3640.

[14] N. Akhtar, F. Shafait, and A. Mian, “Hierarchical beta process with
Gaussian process prior for hyperspectral image super resolution,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 103–120.

[15] Y. Yuan, X. Zheng, and X. Lu, “Hyperspectral image superresolution
by transfer learning,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 10, no. 5, pp. 1963–1974, May 2017.

[16] H. Huang, J. Yu, and W. Sun, “Super-resolution mapping via multi-
dictionary based sparse representation,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2014, pp. 3523–3527.

[17] J. Hu, Y. Li, and W. Xie, “Hyperspectral image super-resolution by
spectral difference learning and spatial error correction,” IEEE Geosci.
Remote Sens. Lett., vol. 14, no. 10, pp. 1825–1829, Oct. 2017.

[18] F. A. Mianji, Y. Gu, Y. Zhang, and J. Zhang, “Enhanced self-training
superresolution mapping technique for hyperspectral imagery,” IEEE
Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 671–675, Jul. 2011.

[19] J. Li, Q. Yuan, and H. Shen, “Hyperspectral image super-resolution
by spectral mixture analysis and spatial–spectral group sparsity,” IEEE
Geosci. Remote Sens. Lett., vol. 13, no. 9, pp. 1250–1254, Sep. 2016.



IRMAK et al.: MAP-BASED APPROACH FOR HYPERSPECTRAL IMAGERY SUPER-RESOLUTION 2951

[20] A. Villa, J. Chanussot, J. A. Benediktsson, M. Ulfarsson, and C. Jutten,
“Super-resolution: An efficient method to improve spatial resolution
of hyperspectral images,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2010, pp. 2003–2006.

[21] Z. Guo, T. Wittman, and S. Osher, “L1 unmixing and its application to
hyperspectral image enhancement,” Proc. SPIE, vol. 7334, p. 73341M,
Apr. 2009.

[22] X. Xu et al., “Hyperspectral image super resolution reconstruction with
a joint spectral-spatial sub-pixel mapping model,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Jul. 2016, pp. 6129–6132.

[23] S. He, H. Zhou, Y. Wang, W. Cao, and Z. Han, “Super-resolution
reconstruction of hyperspectral images via low rank tensor modeling
and total variation regularization,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Jul. 2016, pp. 6962–6965.

[24] H. Irmak, G. B. Akar, and S. E. Yüksel, “A map-based approach
to resolution enhancement of hyperspectral images,” in Proc. 7th
IEEE Workshop Hyperspectral Image Signal Process. Evol. Remote
Sens. (WHISPERS), Jun. 2015, pp. 1–4.

[25] H. Irmak, G. B. Akar, S. E. Yuksel, and H. Aytaylan, “Super-resolution
reconstruction of hyperspectral images via an improved MAP-based
approach,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2016, pp. 7244–7247.

[26] H. Irmak, G. B. Akar, and S. E. Yüksel, “Hyperspectral imagery super-
resolution,” in Proc. 24th Signal Process. Commun. Appl. Conf. (SIU),
May 2016, pp. 1057–1060.

[27] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution
via sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11,
pp. 2861–2873, Nov. 2010.

[28] L. Ziwei, W. Chengdong, C. Dongyue, Q. Yuanchen, and W. Chunping,
“Overview on image super resolution reconstruction,” in Proc.
IEEE 26th Chin. Control Decision Conf. (CCDC), May/Jun. 2014,
pp. 2009–2014.

[29] R. Timofte, R. Rothe, and L. Van Gool, “Seven ways to improve
example-based single image super resolution,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2016, pp. 1865–1873.

[30] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2015.

[31] M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, “Total variation spatial
regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 11, pp. 4484–4502, Nov. 2012.

[32] N. Keshava, “A survey of spectral unmixing algorithms,” Lincoln Lab. J.,
vol. 14, no. 1, pp. 55–78, 2003.

[33] J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geomet-
rical, statistical, and sparse regression-based approaches,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379,
Apr. 2012.

[34] N. Dobigeon, Y. Altmann, N. Brun, and S. Moussaoui, “Linear and
nonlinear unmixing in hyperspectral imaging,” in Data Handling in
Science and Technology, vol. 30. Amsterdam, The Netherlands: Elsevier,
2016, ch. 6, pp. 185–224.

[35] M. A. Veganzones, M. Simões, G. Licciardi, N. Yokoya,
J. M. Bioucas-Dias, and J. Chanussot, “Hyperspectral super-
resolution of locally low rank images from complementary multisource
data,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 274–288,
Jan. 2016.

[36] C.-I. Chang, “Virtual dimensionality for hyperspectral imagery,” Proc.
SPIE, vol. 10, no. 2, p. 1749, 2009.

[37] W. Xiong, C.-I. Chang, and C.-T. Tsai, “Estimation of virtual dimen-
sionality in hyperspectral imagery by linear spectral mixture analy-
sis,” in Proc. Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2010,
pp. 979–982.

[38] J. Bioucas-Dias and J. Nascimento, “Hyperspectral subspace identifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435–2445,
Aug. 2008.

[39] M. G. Asl and B. Mojaradi, “Virtual dimensionality estimation in
hyperspectral imagery based on unsupervised feature selection,” ISPRS,
Ann. Photogram., Remote Sens. Spatial Inf. Sci., vol. 3, no. 17,
pp. 17–23, 2016.

[40] J. Harsanyi, W. Farrand, and C.-I. Chang, “Determining the number
and identity of spectral endmembers: An integrated approach using
Neyman-Pearson eigen-thresholding and iterative constrained RMS error
minimization,” in Proc. Thematic Conf. Geologic Remote Sens., vol. 1.
1993, p. 395.

[41] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct
signal sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 3, pp. 608–619, Mar. 2004.

[42] P. J. Martínez, R. M. Pérez, A. Plaza, P. L. Aguilar, M. C. Cantero, and
J. Plaza, “Endmember extraction algorithms from hyperspectral images,”
Ann. Geophysics, vol. 49, no. 1, pp. 93–101, 2006.

[43] J. Plaza, E. M. T. Hendrix, I. García, G. Martín, and A. Plaza, “On
endmember identification in hyperspectral images without pure pixels:
A comparison of algorithms,” J. Math. Imag. Vis., vol. 42, nos. 2–3,
pp. 163–175, 2012.

[44] J. M. Bioucas-Dias, “A variable splitting augmented Lagrangian
approach to linear spectral unmixing,” in Proc. 1st Workshop Hyper-
spectral Image Signal Process., Evol. Remote Sens., Aug. 2009, pp. 1–4.

[45] D. C. Heinz and C.-I. Chang, “Fully constrained least squares linear
spectral mixture analysis method for material quantification in hyper-
spectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3,
pp. 529–545, Mar. 2001.

[46] S. Z. Li, “Markov random field models in computer vision,” in Proc.
Eur. Conf. Comput. Vis., 1994, pp. 361–370.

[47] P. A. Jensen and J. F. Bard, “Nonlinear programming methods. S2
quadratic programming,” in Operations Research Models and Methods,
vol. 1. Hoboken, NJ, USA: Wiley, 2003, ch. 10.

[48] T. R. Krüth, “Interior-point algorithms for quadratic programming,”
M.S. thesis, Dept. Inform. Math. Model., Tech. Univ. Denmark, Lyngby,
Denmark, 2008.

[49] E. Turgay and G. B. Akar, “Texture and edge preserving multiframe
super-resolution,” IET Image Process., vol. 8, no. 9, pp. 499–508,
Sep. 2014.

[50] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted
pixel camera: Postcapture control of resolution, dynamic range, and
spectrum,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2241–2253,
Sep. 2010.

[51] A. Chakrabarti and T. Zickler, “Statistics of real-world hyperspectral
images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011,
pp. 193–200.

[52] Hyperspectral Remote Sensing Scenes. Accessed: Sep. 5, 2016. [Online].
Available: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes

[53] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored
neighborhood regression for fast super-resolution,” in Proc. Asian Conf.
Comput. Vis., 2014, pp. 111–126.

[54] J. Moreno, B. Jaime, and S. Saucedo, “Towards no-reference of peak
signal to noise ratio,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 1,
pp. 123–130, Jan. 2013.

[55] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[56] S. Rashmi, S. Addamani, and S. Ravikiran, “Spectral angle mapper
algorithm for remote sensing image classification,” Int. J. Innov. Sci.,
Eng. Technol., vol. 50, no. 4, pp. 201–205, 2014.

[57] T. Stathaki, Image Fusion: Algorithms and Applications. Cambridge,
MA, USA: Academic, 2011.

Hasan Irmak, photograph and biography not available at the time of
publication.

Gozde Bozdagi Akar, photograph and biography not available at the time of
publication.

Seniha Esen Yuksel, photograph and biography not available at the time of
publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


